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Abstract - The ability of many insects, especially
moths, to locate either food or a member of the op-
posite sex is an amazing achievement. There are nu-
merous scenarios where having this ability embedded
into ground-based or aerial vehicles would be invalu-
able. This paper presents results from a 3-D computer
simulation of an Unmanned Aerial Vehicle (UAV) au-
tonomously tracking a chemical plume to its source.
The simulation study includes a simulated dynamic
chemical plume, 6-degree of freedom, nonlinear aircraft
model, and a bio-inspired navigation algorithm. The
emphasis of this paper is the development and analy-
sis of the navigation algorithm. The foundation of this
algorithm is a fuzzy controller designed to categorize
where in the plume the aircraft is located: coming into
the plume, in the plume, exiting the plume, or out of
the plume.

Keywords: Fuzzy logic, plume tracking, navigation,
plume navigation, bio-inspired.

1 Introduction

The research discussed herein is a key stepping stone
in the development of a navigation algorithm to aid an
unmanned aerial vehicle in tracking a chemical/odor
plume to its source. The navigation algorithm de-
veloped was inspired by the abilities of the male To-
bacco Hornworm moth (Manduca Sexta). The male
Manduca Sexta (M.Sexta) has been widely studied
regarding its ability to locate a female, via the fe-
male’s pheromone plume, through turbulent air flow.
This purely instinctual ability allows the moth to suc-
cessfully navigate a plume to its source on the first
try, strongly emphasizing that learning is unlikely to
be a factor in M.Sexta’s capability of navigating a
pheromone plume [1][2]. If within nature there exists

animals with the ability to successfully track chemi-
cal/odor plumes, attempting to reverse-engineer these
techniques seems a viable solution to the plume track-
ing problem.
The typical structure of a M.Sexta’s flight pro-

file while tracking a plume begins with the initial
pheromone contact. Upon such contact, the male moth
who is likely downwind from the pheromone source,
will immediately maneuver into the wind and begin an
upwind movement [3]. Figure 1 illustrates the flight
profile exhibited during its upwind, pheromone track-
ing behavior. The moth’s pheromone tracking con-
sists of three main behaviors: Casting; Counterturn-
ing; and Surging. Casting occurs when the insect has
lost contact with the pheromone plume. The moth’s
speed increases and it flies perpendicular to the direc-
tion of the wind, increasing its chances of once again
detecting the pheromone. Counterturning is an “in
the plume” behavior as the moth moves in a zigzag
pattern while maintaining upwind progress. Surging
is a more narrower version of Counterturning, occur-
ring as the moth detects an increased concentration of
pheromone. While making upwind progress, the moth
makes a zigzag pattern across the direction of the wind
[4]. However, the degree by which the moth travels
across the wind can vary significantly. If the moth
looses contact with the pheromone, the counterturn-
ing behavior will cover a larger crosswind area. This
casting behavior results in larger crosswind movements
with turns potentially increasing to 180◦or more. Such
behavior could lead to zero upwind, or even downwind
displacement, as the moth tries to relocate the plume.
Casting will continue until the moth either detects the
pheromone again or it gives up [3]. When the moth
detects higher concentrations of pheromone, its cross-
wind movement decreases, resulting in a surge to the
source [3].

Over the last 20 years, there have been several
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Figure 1: MSexta’s flight profile

attempts to develop navigation schemes based on
M.Sexta’s abilities as well as similar abilities among
other animals and insects. Farrell et al. [5] have devel-
oped the most advanced and thorough 2-D robotic im-
plementation of an odor-based navigation system. The
primary inspirations behind the algorithms used were
taken from the behaviors of both moths and Antarc-
tic procellariiform seabirds [5][6]. The authors’ goals
were to navigate and locate the source of an under-
water chemical plume (Rhodamine dye) using an Au-
tonomous Under Water Vehicle (AUV) located in a
turbulent, near-shore, ocean environment. A flowchart
of the navigation algorithm is shown in Figure 2, where
d = detection, d̄ = no detection, S = source declared,
and S̄ = source not declared. For the Reacquire behav-
ior, the AUV conducts a maneuver depicted in Figure
3. A more thorough discussion of this algorithm can
be found in [5].

Figure 2: Farrell et. al. 2-D algorithm flow chart

Figure 3: Bowtie maneuver

2 Simulation development

2.1 Plume model

The creation of a realistic plume model is important
to the validity of the navigation algorithm which is
developed based on the plume model. However, the
use of a very accurate plume model can be extremely
computationally expensive. One of the goals of this
research was to have the simulation run in a matter of
hours. Hence, a low fidelity plume model was used to
satisfy computation limitations.
The plume model generates a new particle every

second and propagates each particle independently
through a modified biased random walk process. An
initial plume is generated from 10,000 particles that
can then be propagated over time via the biased ran-
dom walk process. One example of an initial plume is
illustrated in Figure 4 with final plume shown in Fig-
ure 5. The simulation takes approximately 45 minutes
to complete, and the initial plume used to start the
simulation takes fewer than 20 minutes to generate.
Concentration was ignored in the development of

the plume for two reasons:

1. Decreased computation time by not dealing with
calculating the diffusion of each particle.

2. Most computer simulations and robotic implemen-
tations incorporate a binary sensor, neglecting the
need for generating concentration information in
the plume model.

2.2 Dynamics model

The UAV dynamics model used for this research was
developed from a 6-degree of freedom, non-linear, F-
16 dynamics model. The F-16 model is a validated
aircraft model [7] which is derived in detail in [8]. The
F-16 model was scaled down to meet the capabilities
of a small UAV and is provided in [13]. This UAV
dynamics model met the needs of the simulation by
maintaining stable flight for:

• Velocities: 10 ft
s → 35 ft

s

• Altitudes: 0 ft → 3,000 ft



Figure 4: Initial 3-D plume

Figure 5: Final 3-D plume

Given the inputs available to the dynamics model,
three autopilot control loops were used to pilot the
UAV: altitude hold, velocity hold, and heading hold.
Therefore, the navigation algorithm was designed to
output a desired altitude (h), velocity (Vuav) and head-
ing (ψuav). A diagram depicting the autopilot program
is given in Figure 6. The methodologies behind how the
autopilot maintains a commanded h, Vuav, and ψuav
are given in [13].

2.3 Sensor model

The sensor model used in the simulation is of a simple
design. If a plume particle falls within a set distance
(defined by the user) of the UAV, then a detection is
made. As the dynamic plume models used by the simu-
lation do not incorporate concentration, the detection
is purely binary. This has been a common practice
used in most odor-based navigation simulations in the
open literature [1][5][9][10][11][12]. Due to the inac-
curacies of the plume model, changing the size of the
sensor is a reflection of the plume density rather than

Figure 6: Autopilot flowchart

the sensitivity of the sensor. The sampling rate of the
sensor is 10 Hz. Once the sensor information is passed
into the navigation algorithm, a new maneuver may be
generated.

2.4 Navigation algorithm

The UAV navigation algorithm consists of four track-
ing/search schemes: Tracking, Horizontal Search,
Backtrack, and Vertical Search. These routines were
developed from a mix of bio-inspiration and ad hoc en-
gineering approaches. The Tracking scheme is based on
a short term memory (STM) algorithm which is unique
to this research. The Horizontal Search scheme is di-
rectly inspired by the moth’s casting behavior. Back-
track is a method of relocating the plume, once the
UAV is thought to be lost, by returning to the vicinity
of the last detection. This methodology was adapted
from the 2-D robotic simulation found in [5]. The Ver-
tical Search scheme is unique to this research and was
developed using ad hoc engineering approaches. An
important parameter for the navigation algorithm as
a whole is the time since last detection, TD. Setting
a threshold, ζ, for TD dictates how long the UAV will
stay in the Horizontal Search Routine before switch-
ing to the Backtrack Routine. Figure 7 illustrates how
these tracking routines are intertwined, forming the
complete navigation algorithm.

Tracking algorithm Figure 8 illustrates the STM.
The length of the STM was set to 10 s, consisting
of sensor data collected at 10 Hz (i.e., 100 memory
locations). The position of the UAV, relative to the
plume, is found by taking the mean of the locations in
memory where detections occurred.

1. Average of 1→ 40, UAV is entering the plume

2. Average of 30→ 80, UAV is in the plume



Figure 7: High-level navigation flowchart

3. Average of 60→ 100, UAV is leaving the plume

4. Average of 0→ UAV is out of the plume

Figure 8: Short term memory

The UAV will use this tracking algorithm as long as
detections exist in the STM. Due to the ambiguity in
the UAV’s location relative to the plume, it is prag-
matic to use a fuzzy controller to generate the maneu-
ver decision. The fuzziness of the STM is described
by the overlap between the membership functions of
the STM fuzzy set, as seen in Figure 9. This is used
in concert with the time since the UAV crossed the
wind line, TZ , in order to help the UAV stay within
the plume.

Figure 9: Short term memory fuzzy set

After the new heading is calculated from the STM
and TZ , a delta-heading is found. This delta-heading
represents how many degrees the UAV must turn, and
is used to calculate a new velocity. The new veloc-
ity is found using a fuzzy controller with delta-heading
as the input and velocity as the output. The velocity
fuzzy controller is depicted in Figure 10. In order to
make a sharp turn, the aircraft has to decrease its ve-
locity. This allows for a tighter turn without pulling
an excessive amount of g’s.

Figure 10: Velocity fuzzy set

Horizontal search routine The Horizontal Search
routine is implemented for a given length of time, ζ,
beginning from the time when zero detections occur
in the STM. During this routine, the UAV will main-
tain altitude while conducting a casting type of maneu-
ver perpendicular to the wind. This maneuver is illus-
trated in Figure 11. The UAV will continually increase
the distance traveled across the wind line by increasing
the time between counterturns, Tct, by ∆Tct.
This search routine will be terminated when either

the UAV makes a detection, or ζ is exceeded. If a de-
tection is made, the Tracking routine will be executed,
and if ζ is reached before a detection occurs, the Back-
track routine will be executed.

Figure 11: Illustration of the Horizontal Search routine

Backtrack routine This routine is executed when
the UAV has lost the plume. Farrell et al. [5] used
a method in their 2-D robotics navigation algorithm
that guided the robot back to the position where it



last made a detection. This method worked quite well
in their 2-D experiments, and was used as the basis for
the Backtrack routine. The UAV is assumed to have
GPS capabilities on board and has the ability to store
the location of the last detection in memory. When
the Backtrack routine is executed, the UAV returns to
within a certain radius, rBT , of the same horizontal
location of the last detection. However, the altitude is
decreased by ∆h, which is varied with altitude. Table
1 gives the range of values for ∆h.

Table 1: Varying altitude changes for Backtrack rou-
tine

Current Altitude ( ft) ∆h
600 ≤ h 100
200 ≤ h < 600 50
50 ≤ h < 200 25
h < 50 10

Vertical search routine The bulk of the UAV’s
movement up to this point has taken place in the
horizontal plane, with little change in altitude. The
assumption is that the mean wind direction will not
change drastically over a short period of time (10’s
of minutes). The plume should still be in the same
vicinity as it was during the last detection. Therefore,
searching the horizontal plane over varying altitudes
should result in a detection. The routine begins by
traveling in a race track pattern at the altitude the
UAV was flown to by the Backtrack routine, but ∆h
below the altitude of the last detection. The rational
for decreasing the altitude by ∆h is tied to the as-
sumption that the UAV exited the plume from above,
as would typically be the case for a rising plume. Once
this pattern is complete, the UAV decreases in alti-
tude another ∆h, executing the racetrack flight profile
again. The racetrack profile is executed 4 more times,
except instead of decreasing in altitude, the UAV in-
creases its altitude each time by ∆h. A detailed illus-
tration of this routine is shown in Figure 12.
Whenever a detection is made, this routine is termi-

nated and the Tracking routine begins. If all six race
tracks are completed without a detection, the UAV is
declared lost and the simulation ends. This routine
could have implimented additional memory to keep
track of more than one detection location. However, in
order to keep the simulation time to within a reason-
able limit (5 hours) this limitation was imposed.

3 Sensitivity Analysis

3.1 Preliminary analysis

A sensitivity analysis of the navigation algorithm was
performed in an attempt to maximize the UAV’s suc-
cess of reaching within 100 ft of the source, while also
trying to minimize flight time. However, the main goal

Figure 12: Illustration of Vertical Search routine

Table 2: Table of scenarios for UAV simulation study
∆Tct\ζ 180 240 300 420
10 x x N/A N/A
20 x x x x
30 N/A x N/A N/A

was to reach the source in the 7,000 s time frame al-
lotted. The variables altered in the analysis were ζ
and ∆Tct as shown in Table 2. Each cell of Table 2
which contains an "x" represents one scenario tested,
and the cells with "N/A" correspond to scenarios not
tested. The reasoning behind not testing certain sce-
narios were time constraints and initial unsuccessful
runs when incorporating larger values of ζ. A single
simulation consists of 10 Monte Carlo runs of one sce-
nario. Each of these simulations used sensor A (Sensor
A = 25 ft, Sensor B = 40 ft radius) and was tested
against one of four possible plume structures. The four
plume types used are:

• Plume B: Slowly meandering plume that continu-
ally rises

• Plume C: Quickly meandering plume that contin-
ually rises

• Plume D: Slowly meandering plume that begins
at an altitude of 500 ft and decreases slightly in
altitude

• Plume E: Quickly meandering plume that begins
at an altitude of 500 ft and decreases slightly in
altitude

Figure 13 illustrates the number of successful runs
for each scenario tested against Plume B using Sensor
A. It is easy to see that ζ’s of 180 s and 240 s have the
highest success rate, as was also the case when tested
against Plume C. To gather more insight, Figure 14
was created, comparing the means and standard devi-
ation of the time taken to reach the source for success-
ful runs. A ζ value of 180 s paired with a ∆Tct of 10
had the largest standard deviation, however, it’s per-
formance overall was better than any other scenario.
Figures 15 through 17 are plots of the trajectory of a
successful UAV simulation (ζ = 180 s and ∆Tct = 10
s) and associated plume. The different colors of the



trajectory represent which one of the four navigation
routines the aircraft was operating in at that instant
in time: Green = Tracking, Blue = Horizontal Search,
Black = Backtrack, and Red = Vertical Search.

Figure 13: Plume B, Sensor A - Number of successes
given 10 Monte Carlo runs of each scenario

Figure 14: Plume B, Sensor A - Statistics for the time
to source for successful Monte Carlo runs

When the scenarios given in Table 2 were tested
against Plumes D and E (non rising plumes), the re-
sults were slightly different than with the previous
plumes. However, the more successful ζ values were
still 180 s and 240 s. The results from tests against
Plume D are given in Figure 18. The statistics of
the times associated with the successful runs against
Plume D are illustrated in Figure 19. The results show
the UAV is typically less successful for ζ values of 180
and 240 but more successful for values of 300 and 400.
This is due to Plume D’s structure and the Backtrack
routine being designed more for a rising plume than a
flat or descending plume.

3.2 Additional analysis

Taking the two best performing ζ values (180 s and 240
s), an additional scenario matrix was designed and is
given in Table 3. This time, only two values were used
for ∆Tct (10 s and 20 s). However, two versions of the
Backtrack routine were used along with a comparison
of sensors A and B. The two versions of the Backtrack
routine used were the original and one that was mod-
ified to command the UAV to go back to the exact

Figure 15: 3-D Plot of a successful run - plume B,
sensor A, ζ = 180 s and ∆Tct = 10 s

Figure 16: Horizontal plane of a successful run - plume
B, sensor A, ζ = 180 s and ∆Tct = 10 s

location of the last detection (not below it). As ex-
pected the results for plumes B and C improved with
the use of sensor B. However, the UAV never reached
the source under the time limit when the new Back-
track routine was used due to more time spent in the
Vertical Search routine. The results for plumes D and
E improved slightly with sensor B and had negligible
improvement with the new Backtrack routine. This
lack of improvement given the new backtrack routine
for against plumes D and E was not surprising. Since
the aircraft typically flew below the plume, returning
to the exact location of the last detection places the
UAV at the bottom edge of the plume. This does not
afford the aircraft the opportunity to begin its track-
ing routine in the center of the plume, increasing its
chances of again flying out of the plume. The results
for plume D are given in Figures 20 and 21.

4 Conclusion

The cornerstone of the navigation algorithm is the
Tracking routine. The idea of using memory to help
make a maneuver decision is unique to this research, as



Figure 17: Vertical plane of a successful run - plume
B, sensor A, ζ = 180 s and ∆Tct = 10 s

Figure 18: Plume D, Sensor A - Number of successes
given 10 Monte Carlo runs of each scenario

prior research efforts made maneuver decisions based
on single detections. The success rate of up to 70%
given the 7,000 s time frame is a notable achievement
for the first set of experiments. Obviously, taking al-
most 6 hours to traverse a 9,000 ft plume is not opti-
mal, but this is a step in the right direction. Given the
results in Section 3, two potential improvements are:

1. Decreasing ζ: This will make the UAV spend less
time in the Horizontal Search algorithm (the most
used algorithm), executing the Backtrack routine
quicker. This will return the UAV back to the
plume, spending less time searching when it is out
of the plume.

2. Helical flight pattern: The M.Sexta data suggest
that the optimal 2-D search pattern has a sinu-

Table 3: Additional scenarios for UAV simulation
study (Btk = Backtrack)

ζ = 180 ζ = 240
∆T ct\ S e n so r A S e n s o r B S e n so r A S e n s o r B

O r ig N ew O r ig N ew O r ig N ew O r ig N ew

B tk B tk B tk B tk B tk B tk B tk B tk

10 x x x x x x x x

20 x x x x x x x x

Figure 19: Plume D, Sensor A - Statistics for the time
to source for successful Monte Carlo runs

Figure 20: Plume D, Sensor A with new Backtrack
routine - Number of successes given 10 Monte Carlo
runs of each scenario

soidal nature. Extending this to 3-D brings the
thought of a helical flight path, searching the hor-
izontal plane as well as the vertical plane.

The success of this research lays the foundation
for developing the odor-based navigation algorithms of
small UAV’s owned and operated by the Air Force Re-
search Lab, Sensor’s Directorate, at Wright Patterson
Air Force Base.
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